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A formal treatment of some of the properties of deterministic, rule 150, elemen- 
tary one-dimensional cellular automata (CA) with null boundary conditions is 
presented. The general form of the characteristic polynomial of the CA global 
rule transition matrix is obtained. Mathematical relationships between the 
CA register lengths and the order of the corresponding group or semigroup 
structures are derived. 
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1. I N T R O D U C T I O N  

The various aspects of cellulat au tomata  (CA) and their applications in 
physics, chemistry, biology, and computer  science have been reviewed/1,~/ 
Present very large scale integration (VLSI)  levels allow the implementat ion 
of  elementary CA structures of high complexity, which provide a potential 
alternative to convent ional  radix arithmetic processors with highly parallel 
computa t ion  capabililties. (3 5) 

Some of  the algebraic properties of  one-dimensional  ( t D )  CA with 
periodic boundary  conditions have recently been studied by Mart in  et 

aL, ~61 using properties of the CA global state polynomials  over finite fields. 
Exact results for deterministic CA with periodic boundary  conditions 
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have also recently been studied by Guan and He, ~7) exploiting the proper- 
ties of circulant matrices on finite fields. 

Group and semigroup properties of 1D finite CA, with local rules 90 
and 150 (in Wolfram's notation (8~) and null boundary conditions were 
obtained by Thanailakis eta/ .  (9) They observed that the global symmetries 
of CA with different lengths appear to result in a multiplicity of rela- 
tionships between the group or semigroup orders and the CA length. 
However, such relationships should be formally derived, and the present 
paper contributes in this particular direction. 

More specifically, this paper presents a formal treatment of some of 
the algebraic properties of rule 150, 1D, null-bounded CA. The method is 
based on the characteristic polynomials of the CA global rule transition 
matrices, because the operation of the rule 150, as of any other linear 
(additive) rule, can exactly be described by a matrix. This method, which 
can very easily be extended to the case of CA with periodic boundary con- 
ditions, has been proved very efficient in obtaining algebraic properties of 
CA as a function of CA length. The main results of the paper are sum- 
marized as follows: (i) the general form of the characteristic polynomial of 
the global rule transition matrix is formally obtained, (ii) mathematical 
relationships between the CA lengths and the order of the corresponding 
group-algebraic structures are rigorously determined, and (iii) the semi- 
group properties are formally derived in the form of recursive relations 
between the CA lengths and corresponding relations between the orders of 
the CA semigroup-algebraic structures. 

2. DEFINIT ION OF 1D CELLULAR A U T O M A T A  

A 1D CA is defined as a uniform linear array of identical cells (sites) 
of infinite or finite extent with a discrete variable at each site. The global 
state is completely specified by the values of the variables at each site. In 
this paper, we exclusively consider finite 1D CA with cell values (local 
states)sZ2 (i.e., 1 or 0), and with no memory associated with the cell 
beyond the previous time step (clock cycle). The total number of possible 
global states for a 1D CA of length N is 2 x. A CA evolves in discrete time 
steps, and the value taken by a particular cell at any given time step is 
affected by the values of cells in its neighborhood on the previous time step. 
The neighborhood of a cell is taken, in this paper, to be the cell itself and 
the cells immediately adjacent to it on the left and right. 

Null boundary conditions have been chosen because in VLSI 
implementations one prefers to hold the end inputs at a constant value, 
grounded in this particular case. 
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The local rule may be considered as a Boolean function of the sites 
within the neighborhood, and may be expressed as 

T ( x ) = ~ i _ i x i  1 • ~ i x i  , f l i + l X i + l  (2.1) 

where the symbol �9 is used to define any binary operation, and the 
coefficients /~e {0, 1}. The results in this paper were obtained using the 
following specific form of Eq. (2.1): 

T ( x ) = x i - l + x i + X  ~+~ rood2 (2.2) 

Equation (2.2) defines rule 150 in Wolfram's notation.(8) According to this 
rule, the value 71 ~ of the cell site i on clock cycle t (CA local state) is given 
by the relation 

ai(o _=ai_l(t-1) +alt-1} 4_,~(t_~i+ll) m o d 2  (2.3) 

3. FORMAL ANALYSIS OF 1D CA 

3.1. Representation of the Global Rule 

The global state transformation, under the action of the rule 150, in 
one time step may be represented by the following matrix operation: 

S(t)=MNS(t 1) (3.1) 

where Mjv is an N•  N square matrix representing the CA (of length N) 
global rule for its time evolution, S (~-1~ is an ( N x l )  column vector 
representing the CA global state on clock cycle ( t - 1 ) ,  and S (t) is the 
corresponding column vector representing the CA global state on clock 
cycle t. The elements of these vectors represent the values of the 
corresponding cell sites (local states). Note that in the result (3.1), and all 
subsequent expressions in this paper, rood 2 arithmetic is implied. The 
global rule transition matrix M u takes the following form: 

m N = 

I1 1 0 0 0 0 - \  

1 t 1 0 0 0 (~) ) 0 1 1 1 0 0 

0 0 1 1 1 0 
(._) 0 0 0 1 1 1 

0 0 0 0 1 1/N• 
4 

(3.2) 
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The global state S ~t=k) may be obtained from the initial global state 
S (t=~ using the relation 

SCt=k) = M~N �9 S ~=~ (3.3) 

where M~N is the kth power of the (rood 2) N x N rule matrix M N. 

The set of N x N matrices 

4 M ~  ..... M~N} (3.4) F= {MN, M 2, M3N, MN,..., 

where k is a positive integer with a value depending on the CA length N, 
characterizes completely the properties of 1D, null-bounded, CA of 
different lengths. 

It has been proved (9) that the behavior of a rule 150 CA depends on 
its length N as follows: 

(i) If N mod 3 5 2 ,  the set F in Eq. (3.4) forms a cyclic group 
structure. The corresponding group order is ~ , where k is the 
smallest integer that satisfies the relation 

k M N = I  (3.5) 

and I is the N x N identity matrix. 

(ii) If N rood 3 = 2, the set F forms a semigroup-algebraic structure 
of order ~  where k is the smallest integer that satisfies the 
relation 

Mk _ ~t~tq~< k -1 (3.6) 
N - -  ~ ' ~  N 

Figures la and lb show the types of state transition graphs obtained 
for rule 150, group- and semigroup-algebraic structures, respectively. The 
nodes represent the corresponding global states, whereas each arc 
represents the global rule transition matrix. The action of the rule group 
symmetry operators (powers of MN) on a nonsymmetrical initial global 
state containing a single ' f '  leads to a cycle of maximum length. (6) Since 
this mapping is an isomorphism, the number of states in such a cycle is 
equal to the order ~ N of the corresponding group-algebraic structure. If 
this action, however, is on a symmetrical initial global state, it leads to a 
cycle whose length is a divisor of ~ N, corresponding to a subgroup order. 
The value of the parameter q in Eq. (3.6) is equal to the tail-tree height of 
the corresponding semigroup state transition graph. The value of the 
parameter k in Eq. (3.6) is equal to the total number of states in the loop 
(or loops) with the maximum length plus the number of states in each of 
the tail-trees rooted at the loop states. Finally, the value of ( k -  q) is equal 
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(a) 

B 

~"'- A 

Fig. 1. (a) The global state transition graph for a rule 150, null-bounded, 1D CA of length 
N - 7 .  Group-algebraic structure of order ~ N = 8 (the entire state transition graph consists 
of 14 cycles of 8 states, 3 cycles of 4 states. 1 cycle of 2 states, and 2 cycles of 1 state). (b) 
The global state transition graph for a rule 150, null-bounded, 1D CA of length N =  11. Semi- 
group-algebraic structure of order ~ k - 1  ~ 11, tail-tree height q = 8, and maximum 
number of loop states ( k - q ) =  4 (the entire state transition graph consists of 1 loop of 4 
states, 1 loop of 2 states, and 2 loops of 1 state. At each loop state is rooted a binary tail-tree 
of height q = 8). All triangles are identical and contain the nodes and arcs included in the big 
triangle named B. Also, all parallelograms are identical (in content) with the big 
parallelogram named A. 
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to the number of states in the loop (or loops) with the maximum length, 
and the order ~ of the corresponding semigroup-algebraic structure for 
a CA of length N is equal to the value of the quantity ( k -  1). It has been 
observed that the tail-tree lengths are equal for all loops. This property has 
been already proved for periodic boundary conditions in refs. 6 and 7. 

The CA group and semigroup properties may also be studied by 
employing the characteristic polynomial of the global rule transition 
matrix, which we will now derive. 

I .emma 1. Given a global rule transition matrix MN for a finite 1D, 
null-bounded, rule 150 CA of length N, the corresponding characteristic 
polynomial Pu(,i) is given recursively by 

PN(2)= (2+ 1) PN ~(2)+PN_2(2) (3.7) 

Proof. This result follows directly from the definition of the charac- 
teristic polynomial of the global rule matrix MN. 

It is important, however, to be able to obtain directly the nonrecursive 
form of the characteristic polynomial PN(2). In this respect, the following 
theorem holds: 

T h e o r e m  1. Given a global rule transition matrix MN for a null- 
bounded rule 150 CA of length N, the corresponding characteristic poly- 
nomial PN(2) is given directly by the relation 

1 
P N ( 2 ) = ~  j=o 2 j + l  (2+1)  N 2J[ (2+1)2+4]  j 

where IN/2] represents the integral part of the number N/2, and (2j+l)N+l 
represents the number of all possible combinations of N +  1 elements into 
a sequence of 2j + 1 elements. 

Proof. Equation (3.7) of Lemma 1 may be written in the general 
form 

PN -- aPN 1 -- Pzv- 2 = 0 

The solution of this finite difference equation is 

+ B p f  = PN 

with initial conditions 

(3.8) 

(3.9) 

Po = 1 and P1 = a (3.10) 
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where Pl and P2 are the roots of the quadratic equation y2--ay--1 =0. 
From Eqs. (3.9) and (3.10) we determine A and B, and finally obtain 

1 J=[N/2](N'4-11) 
PN=2--~ 2 aN-2J[a2 +4]J (3.11) 

j=o 2j+ 

Replacing a in Eq. (3.11) by (2+  1), according to Lemma 1, we get the 
nonrecursive form of the characteristic polynomial. 

3.2. Algebraic Properties 

Figure 2 shows the order ~ N of group structures, obtained by simula- 
tion, as a function of N. It is apparent from Fig. 2 that the values of ~ N 
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Orders of group-algebraic structures ~ N for rule 150, null-bounded, 1D CA as a 
function of the CA length N. 
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for N = 2 ~ - 1, where n = l, 2, 3 ..... constitute the lower bound for the range 
of allowed values of ~ u, whereas the values ~ u = 2 ( 2  u / 2  - 1 )  constitute 
the upper bound. There is a great number of classes of CA satisfying dif- 
ferent functional dependences for their lengths and the corresponding 
group orders. It is highly desirable to have formal results regarding these 
dependences, and the contribution of the present paper in this respect will 
now be presented and discussed. 

k e m m a  2. If PN(.~) is the characteristic polynomial of the global 
rule transition matrix for a rule 150, null-bounded, 1D CA of length N, 
then 

P~v(2) = Px(22) (3.12) 

Proof. The relation is obvious since modulo 2 arithmetic is assumed. 

k e m m a  3. The characteristic polynomial P2N+1(2), where N~>2, is 
recursively generated by the relation 

P2N+ 1(2) = (2 + 1) P~(~) (3.13) 

Proof. It can easily be proved by induction on N using Eq. (3.7) of 
Lemma 1. 

L e m m a  4. If the length N of a rule 150, null-bounded, 1D CA is 
even, the corresponding characteristic polynomial PN()~) has an odd 
number of terms, whereas if N is odd, PN()~) has an even number of terms. 

Proof. For N = 2  and N = 3  the characteristic polynomial Pu(,~) 

takes the form 

and 

P2()0 = )2 (i.e., an odd number of terms) 

respectively. From Lemma 1 it is obvious that PN()o) has the same parity 
a s  PN 2 ( ' ~ )  �9 Hence Lemma 4 follows. 

Let us now suppose that the group order of a CA of length N 
mod 3 r 2 is ~ u = k. For this CA we consider a cycle of maximal length 
obtained from a nonsymmetrical initial global state. The states of 
such a cycle can be embedded in the states of a CA with length 2 N +  1, 
which have the following bit configurations: the first N cells contain the 
corresponding global states of the CA with length N; the ( N +  1) cell 
contains the bit "0" and the ( N + 2 ) ,  ( N + 3 )  ..... ( 2 N + l )  cells contain 
configurations which are bit reflection-symmetric to those of the above 

p3(,~) = 23 ~_ ,~2 _~ ~. _~ 1 (1.e., a n  e v e n  n u m b e r  of  terms) 
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global states considered for the CA of length N. Since the CA global rule 
is reflection-symmetric, the symmetry of the initial global state is preserved 
and hence the zero value of the (N + 1) cell is also preserved. Therefore, we 
have a cycle, with symmetric global states only, of length k = ~ for the 
CA of length 2 N +  1. It is obvious from the additivity property of rule 
150  (2'6'8/ that the length of this cycle is a divisor of that of the maximal 
cycle of a CA with length 2 N +  1, obtained from a nonsymmetrical initial 
global state containing a single "1," i.e., k/~ In fact the following 
theorem holds. 

T h e o r e m  2. If 0 G 2 N + I  and ~ N a r e  the group orders for rule 150, 
null-bounded, 1D CA of lengths 2 N + l  and N, respectively, where 
N rood 3 v a 2 and ~ u - 1 >~ N, then 

0G2N+ I = 2 ~ (3.14) 

Proof. For rule 150 CA group-algebraic structures the characteristic 
polynomial PN(.~) is 

p N ( 2 ) = 2 N + C N  12N--1--] - ... + C l 2 + l  

o r  

2k N p N ( 2 ) = 2 k + c  N l)ck lq_ , . ,_]_c12k N + l l _ 2 k  N 

where k = ~ N. Since k - 1/> N, 

) I , -NpN( f i , )  =- ,~J, + pN()~) Q(2)  + R ( 2 )  (3.15) 

where Q(2) and R(2) are, respectively, the quotient and remainder of the 
polynomial division 

P N ( ~ ) Q ( ) ~ ) +  R()~)==-F(.;t)=cN lfl~ k 1- t- . . . .Ar-Cl f lk-N+l_}_~ k - N  
(3.16) 

PN(2)--~- 2N"I-CN_I)~ N-1  -1- "'" 4-Cll~ n t- 1 

It can easily be proved that R(2)= 1. Therefore, Eq. (3.15) reduces to 

~k NpN(~  ) = ~k ..{._ p N ( j ,  ) Q()~) + 1 (3.17) 

Obviously, the above equation holds only for k =  ~ Since F(2) and 
PN()~) always differ by one term, taking into account Lemma 4, simple 
parity algebra shows that Q(2) contains always an odd number of terms. 

Replacing 2 in Eq. (3.17) by M2N+ 1, we obtain 

11112k - 2N ~ i JlA 2 2k 2 
+ P x ( M 2 N  + 1 ~'*2N+I - -N~."*2N+I)  =- M2N+ l )Q(M2N+~)+I (3 .18)  
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From Lemma 2, Lemma 3, and the Cayley-Hamilton theorem, we have 

2 ) = M2N+ 2 PN(M2N+ 1 P N ( M 2 N + I  1 ) (3.19) 

From Eq. (3.18) after the repeated use of Eq. (3.19) and because of the odd 
parity of Q(2), we obtain 

2k 
M2N+ 1 = I (3.20) 

Because k for the CA of length N is minimum and, also, k/~ the 
parameter 2k in Eq. (3.20) for the CA of length 2 N +  1 is also minimum. 
Hence, 

0G2N+ 1 = 2k = 2 ~ N (3.21) 

It is obvious from Theorem 2 that all even CA lengths Nmitial = Nm = 1, 
such that Ninitia 1 > 1 and Ninit~a~ rood 3 r 2, serve as initial values for corre- 
sponding classes, within each of which the following recursive relations 
hold: 

Nm+l = 2 N m +  1 

and (3.22) 

OGN,,,+I = 20GNm 

where m = 1, 2, 3,.... The evennes condition is merely an efficient way of 
identifying initial values Ninitial = Nm_ 1 for corresponding classes of CA 
satisfying Eqs. (3.22). 

Now we will prove the results related to the lower bound described 
above and shown in Fig. 2. 

kernma 5. The characteristic polynomial PN(2) of rule 150, null- 
bounded, 1D CA of length N = 2" - 1, where n = 1, 2, 3 ..... is given by 

Px=e,,-1(2) = (2+  1) N (3.23) 

ProoL It can easily be proved by induction on n using Eq. (3.13) of 
Lemma 3. 

T h e o r e m  ;3. If the length of a rule 150, null-bounded, ID CA is of 
the form N =  2 " - 1 ,  where n =2 ,  3, 4,..., then the corresponding group 
order is given by the relation 

OGN_ 2,, 1 = 2"=  N +  1 (3.24) 

Proof. According to Lemma 5, all coefficients cr of the characteristic 
polynomial PN(2) for N =  2"-- 1 are equal to 1. 
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From Eq. (3.23) of Lemma 5 and the Cayley-Hamilton theorem I1~ 
have 

Hence 

2 n - -  2 2 ~ M ~ - I = M N  + M N - 3 +  ... + M N + I  

2 n 

M N = I 

Therefore, the corresponding group order is 

~ 1 = 2 " = N + 1  

It is important to note that Theorem 3 relates ~ N directly to N, 
whereas Theorem 2, which also applies to the lower bound of Fig. 2, relates 
recursively the values of N and the values of ~  N. Of course, Theorem 3 
comes immediately as a consequence of Theorem 2 with N m_ 1 = 3 = 2 2 - 1. 

We will now present the results related to semigroup-algebraic 
structures. 

k e m m a  6. Given a global rule transition matrix MN for a rule 150, 
null-bounded, 1D CA, the corresponding characteristic polynomial PN(2) 
is recursively given by 

PN(A)=,~4PN 4(,~)+(,~+ I)2pN 6(fl~) 

Proof. It can easily be proved by successive application of Lemma 1. 

All even CA lengths N i n i t i a  I = N m _  l, such that Nm = 1 mod 3 = 2, serve 
as initial values for corresponding classes of semigroup-algebraic structures, 
within each of which the CA lengths satisfy the relation 

Nm+l = 2 N m +  1 (3.25) 

where m = l, 2, 3 ..... 
We will now present some results related to such classes of CA semi- 

group structures. 

T h e o r e m  4. If MkNm=M q for a rule 150, null-bounded, 1D CA 
N m 

of length N m m o d 3 = 2 ,  then for a CA of length Nm+~=2N m+l the 
following relation holds: 

M 2k = M2N~ N m + l  ! m +  

Proof. The proof is exactly the same as that of Theorem 2, with two 
exceptions: the characteristic polynomial PN(2) does not have a constant 
term and the remainder R(2) is a monomial of the form R(2 )=  2 q. 
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It is obvious from T h e o r e m 4  that  all lengths such that  
N m = , m o d  3 = 2 and at the same time N,, z_ l mOd 2 = 0 serve as initial 
values for corresponding classes, within each of which the following 
recursive relations hold: 

Nrn+ l = 2Nm + 1 (3.26) 

qN,,+l = 2qN,, (3.27) 

kNm+ 1 = 2kNm (3.28) 

(k - q ) N . , ~  1 = 2(k - q)N~ (3.29) 

~ ~ = 2 ~ ~ + 1 (3.30) 

where m = 1, 2, 3 ..... The initial lengths N i n i t i a  1 ~ - N m _  l of the above CA 
classes are given by 

Ninitial ~ Nm - 1 - 2, 8, 14, 20 ..... r, r + 6 .... 

Theorem 4 and Eqs. (3.28)-(3.30) are not valid for the special case of the 
p a i r  N m = 1 = 2 and N m + 1 = 2Nm -t- 1 ---- 5. This exception is due to the fact 
that  their global rule transit ion matrices do not  satisfy the basic hypothesis 
of Theorem 4. 

T h e o r e m  5. For  rule 150, null-bounded,  1D CA semigroup struc- 
tures with lengths Nm=l, where Nm_l  mod  2 = 0 and at the same time 
Nm = 1 rood 3 = 2, the corresponding tail-tree height qN,,= ~ in the state trans- 
ition graph is 

qNm=l = 2  

Proof. The rule 150 CA with length N mod  3 = 2  defines a semi- 
group-algebraic structure ~ and thus its characteristic polynomial  PN(2) 
does not  have a constant  term, i.e., 

P N ( 2 ) = . ~ N - t - C N _ t 2 N - - I  + . . .Cq l j q - - l  + 2 q  (3.31) 

where 1 ~<q~<N. The values of N m=~ that  satisfy the relations 
Nm=l rood 2 = 0  and N , ,= I  mod  3 = 2  a r e  N m _  1 - -=2,  8 ,  14 ..... r, r + 6,.... 

Theorem 5 follows from L e m m a 6  [ taking into account  that 
P 2 ( 2 ) = 2 2 ]  and Eq. (3.31). 

4. CONCLUDING REMARKS 

In this paper a formal t reatment  of some of the properties of deter- 
ministic rule 150, null-bounded, 1D CA, for which matrix techniques are 
applicable, is presented and discussed. 
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The method used in this paper is based on the characteristic polyno- 
mials of the CA global rule transition matrices, which for null-bounded CA 
are not circulant matrices. This method can very easily be extended to the 
case of CA with periodic boundary conditions. 

The general form of the characteristic polynomial of the global rule 
transition matrix is derived. 

All values of the CA length N correspond to classes of group- or semi- 
group-algebraic structures with starting values of N which are even integers 
congruent either to {0, 1 } mod 3 or 2 mod 3. Within each of these classes 
the CA lengths satisfy the recursive relation 

N,~+ 1-- 2Nm + 1 

When the starting value of N is congruent to {0, 1 } rood 3, the CA 
belonging to such a class define group-algebraic structures of orders ~ 
satisfying the relation 

OGN,~+ , = 20GNm 

whereas when the starting value of N is congruent to 2 mod 3, the CA 
belonging to such a class define semigroup-algebraic structures described 
by the relations 

qNm I ~ 2 

qN,~. ~ = 2qN,, 

k N m +  I =- 2kNm 

(k - q)Nm. 1 = 2(k - q)Nm 

OSNm + ~ = 2 ~ + 1 

where q is the tail-tree height of the corresponding semigroup state 
transition graph, k is the total number of states in the loop (or loops) with 
the maximum length plus the number of states in each of the tail-trees 
rooted at the loop states, ( k - q )  is the number of states in the loop (or 
loops) with the maximum length, and ~ x is the order of the corresponding 
semigroup-algebraic structure, being equal to the value of the quantity 
(~ -  ~). 

All allowed values of group orders, ~ N, of the corresponding CA 
algebraic structures lie between a lower bound, defined by ~  1, 
where N = 2  n -  1 and n =  1, 2, 3 ..... and an upper bound, defined by 
~ x = 2(2 N/2 - 1 ). 

Preliminary work (now in progress) on higher-dimension CA shows 
that analogous results may also be obtained for such CA. 
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